Паровые и газовые турбины: назначение, принцип действия, конструкции, технические характеристики, особенности эксплуатации. О газовых турбинах для не инженеров Чем газовая турбина отличается от паровой


Тепловая турбина постоянного действия, в которой тепловая энергия сжатого и нагретого газа (обычно продуктов сгорания топлива) преобразуется в механическую вращательную работу на валу ; является конструктивным элементом газотурбинного двигателя.

Нагревание сжатого газа, как правило, происходит в камере сгорания. Также можно осуществлять нагрев в ядер-ном реакторе и др. Впервые газовые турбины появились в конце XIX в. в качестве газотурбинного двигателя и по конструктивному выполнению приближались к паровой турбине. Газовая турбина конструктивно представляет собой целый ряд упорядоченно расположенных неподвижных лопаточных венцов аппарата сопла и вращающихся венцов рабочего колеса, которые в результате образуют проточную часть. Ступень турбины представляет собой сопловой аппарат, совмещенный с рабочим колесом . Ступень состоит из статора, в который входят стационарные детали (корпус, сопловые лопатки, бандажные кольца), и ротора , представляющего собой совокупность вращающихся частей (таких, как рабочие лопатки, диски, вал).

Классификация газовой турбины осуществляется по многим конструктивным особенностям: по направлению газового потока, количеству ступеней, способу использования перепада тепла и способу подвода газа к рабочему колесу. По направлению газового потока можно различить газовые турбины осевые (самые распространенные) и радиальные, а также диагональные и тангенциальные. В осевых газовых турбинах поток в меридиональном сечении транспортируется в основном вдоль всей оси турбины; в радиальных турбинах, наоборот, перпендикулярно оси. Радиальные турбины подразделяются на центростремительные и центробежные. В диагональной турбине газ течет под некоторым углом к оси вращения турбины. У рабочего колеса тангенциальной турбины отсутствуют лопатки, такие турбины применяются при очень малом расходе газа, обычно в измерительных приборах. Газовые турбины бывают одно-, двух- и многоступенчатые.

Количество ступеней определяется многими факторами: назначением турбины, ее конструктивной схемой, общей мощностью и развиваемой одной ступенью, а также срабатываемым перепадом давления. По способу использования располагаемого перепада тепла различают турбины со ступенями скорости, у которых в рабочем колесе происходит только поворот потока, без изменения давления (активные турбины), и турбины со ступенями давления, в них давление уменьшается как в сопловых аппаратах, так и на рабочих лопатках (реактивные турбины). В парциальных газовых турбинах подвод газа к рабочему колесу происходит по части окружности соплового аппарата или по его полной окружности.

В многоступенчатой турбине процесс преобразования энергии состоит из целого ряда последовательных процессов в отдельных ступенях. В межлопаточные каналы соплового аппарата подается сжатый и подогретый газ с начальной скоростью, где в процессе расширения происходит преобразование части располагаемого теплоперепада в кинетическую энергию струи вытекания. Дальнейшее расширение газа и преобразование теплоперепада в полезную работу происходят в межлопаточных каналах рабочего колеса. Газовый поток, воздействуя на рабочие лопатки, создает крутящий момент на главном валу турбины. При этом происходит уменьшение абсолютной скорости газа. Чем ниже эта скорость, тем большая часть энергии газа преобразовалась в механическую работу на валу турбины.

КПД характеризует эффективность газовых турбин, представляющую собой отношение работы, снимаемой с вала, к располагаемой энергии газа перед турбиной. Эффективный КПД современных многоступенчатых турбин довольно высок и достигает 92-94%.

Принцип работы газовой турбины состоит в следующем: газ нагнетается в камеру сгорания компрессором , перемешивается с воздухом, формирует топливную смесь и поджигается. Образовавшиеся продукты горения с высокой температурой (900-1200 °С) проходят через несколько рядов лопаток, установленных на валу турбины, и приводят к вращению турбины. Полученная механическая энергия вала передается через редуктор генератору , вырабатывающему электричество.

Тепловая энергия выходящих из турбины газов попадает в теплоутилизатор. Также вместо производства электричества механическая энергия турбины может быть использована для работы различных насосов , компрессоров и т. п. Наиболее часто используемым видом топлива для газовых турбин является природный газ, хотя это не может исключить возможности использования других видов газообразного топлива. Но при этом газовые турбины очень капризны и предъявляют повышенные требования к качеству его подготовки (необходимы определенные механические включения, влажность).

Температура исходящих из турбины газов составляет 450-550 °С. Количественное соотношение тепловой энергии к электрической у газовых турбин составляет от 1,5: 1 до 2,5: 1, что позволяет строить когенерационные системы, различающиеся по типу теплоносителя:

1) непосредственное (прямое) использование отходящих горячих газов;
2) производство пара низкого или среднего давления (8-18 кг/см2) во внешнем котле;
3) производство горячей воды (лучше, когда требуемая температура превышает 140 °С);
4) производство пара высокого давления.

Большой вклад в развитие газовых турбин внесли советские ученые Б. С. Стечкин, Г. С. Жирицкий, Н. Р. Брилинг, В. В. Уваров, К. В. Холщевиков, И. И. Кириллов и др. Значительных успехов в создании газовых турбин для стационарных и передвижных газотурбинных установок достигли зарубежные фирмы (швейцарские «Броун-Бовери», в которой работал известный словацкий ученый А. Стодола, и «Зульцер», американская «Дженерал электрик» и др.).

В дальнейшем развитие газовых турбин зависит от возможности повышения температуры газа перед турбиной. Это связано с созданием новых жаропрочных материалов и надежных систем охлаждения рабочих лопаток при значительном усовершенствовании проточной части и др.

Благодаря повсеместному переходу в 1990-е гг. на использование природного газа в качестве основного топлива для электроэнергетики газовые турбины заняли существенный сегмент рынка. Несмотря на то что максимальная эффективность оборудования достигается на мощностях от 5 МВт и выше (до 300 МВт), некоторые производители выпускают модели в диапазоне 1-5 МВт.

Применяются газовые турбины в авиации и на электростанциях.

  • Предыдущее: ГАЗОАНАЛИЗАТОР
  • Следующее: ГАЗОВЫЙ ДВИГАТЕЛЬ
Категория: Промышленность на Г 


В состав электростанций относительно небольшой мощности могут входить как газотурбинные двигатели (ГТД), так и поршневые (ПД). В связи с этим у заказчиков часто возникает вопрос, какой привод предпочтительнее . И, хотя ответить на него однозначно невозможно, цель настоящей статьи - попытка разобраться в этом вопросе.

Введение

Выбор типа двигателя, а также их количества для привода электрогенераторов на электростанции любой мощности является сложной технико-экономической задачей. Попытки сравнить между собой в качестве привода поршневые и газотурбинные двигатели чаще всего делаются при условии использования в качестве топлива природного газа. Их принципиальные преимущества и недостатки анализировались в технической литературе , в рекламных проспектах производителей электростанций с поршневыми двигателями и даже на страницах Интернета.

Как правило, приводятся обобщенные сведения о разнице в расходах топлива, в стоимости двигателей без всякого учета их мощности и условий работы. Часто отмечается, что состав электростанций мощностью 10-12 МВт предпочтительнее формировать на базе поршневых двигателей, а большей мощности - на базе газотурбинных. Принимать эти рекомендации как аксиому не следует. Очевидно одно: каждый тип двигателя имеет свои преимущества и недостатки, и при выборе привода нужны некоторые, хотя бы ориентировочные, количественные критерии их оценки.

В настоящее время на российском энергетическом рынке предлагается достаточно широкая номенклатура как поршневых, так и газотурбинных двигателей. Среди поршневых превалируют импортные двигатели, а среди газотурбинных - отечественные.

Сведения о технических характеристиках газотурбинных двигателей и электростанциях на их базе, предлагаемых для эксплуатации в России, в последние годы регулярно публикуются в «Каталоге газотурбинного оборудования» .

Аналогичные сведения о поршневых двигателях и электростанциях, в состав которых они входят, можно почерпнуть только из рекламных проспектов российских и иностранных фирм, поставляющих это оборудование. Информация о стоимости двигателей и электростанций чаще всего не публикуется, а опубликованные сведения часто не соответствуют действительности.

Непосредственное сравнение поршневых и газотурбинных двигателей

Обработка имеющейся информации позволяет сформировать приведенную ниже таблицу, которая содержит как количественную, так и качественную оценку преимуществ и недостатков поршневых и газотурбинных двигателей. К сожалению, часть характеристик взята из рекламных материалов, проверить полную достоверность которых чрезвычайно трудно или практически невозможно. Необходимые для проверки данные о результатах работы отдельных двигателей и электростанций, за редким исключением , не публикуются.

Естественно, что приведенные цифры являются обобщенными, для конкретных двигателей они будут строго индивидуальными. Кроме того, некоторые из них даны в соответствии со стандартами ISO, а фактические условия работы двигателей существенно отличаются от стандартных.

Представленные сведения дают только качественную характеристику двигателей и не могут использоваться при подборе оборудования для конкретной электростанции. К каждой позиции таблицы можно дать некоторые комментарии.

Показатель Тип двигателя
Поршневой Газотурбинный
Диапазон единичных мощностей двигателей (ISO), МВт 0.1 - 16.0 0.03 - 265.0
Изменение мощности при постоянной температуре наружного воздуха Более устойчив при снижении нагрузки на 50%. КПД снижается на 8-10% Менее устойчив при снижении нагрузки на 50%. КПД снижается на 50%
Влияние температуры наружного воздуха на мощность двигателя Практически не влияет При снижении температуры до -20°C мощность увеличивается примерно на 10-20%, при повышении до +30°C - уменьшается на 15-20%
Влияние температуры наружного воздуха на КПД двигателя Практически не влияет При снижении температуры до -20°C КПД увеличивается примерно на 1.5% абс.
Топливо Газообразное, жидкое Газообразное, жидкое (по спецзаказу)
Необходимое давление топливного газа, МПа 0.01 - 0.035 Более 1.2
КПД по выработке электроэнергии при работе на газе (ISO) от 31% до 48% В простом цикле от 25% до 38%, в комбинированном - от 41% до 55%
Соотношение электрической мощности и количества утилизированной теплоты, МВт/МВт (ISO) 1/(0.95-1.3) 1/(1.4-4.0)
Возможности использования утилизированной теплоты выхлопных газов Только на нагрев воды до температуры выше 115°C На производство пара для выработки электроэнергии, холода, опреснения воды и т.д., на нагрев воды до температуры 150°C
Влияние температуры наружного воздуха на количество утилизированной теплоты Практически не влияет При снижении температуры воздуха количество теплоты при наличии регулируемого лопаточного аппарата у газовой турбины почти не уменьшается, при его отсутствии - уменьшается
Моторесурс, ч Больше: до 300 000 для среднеоборотных двигателей Меньше: до 100 000
Темп рост эксплуатационных затрат с увеличением срока службы Менее высокий Более высокий
Масса энергоблока (двигатель с электрогенератором и вспомогательным оборудованием), кг/кВт Существенно выше: 22.5 Существенно ниже: 10
Габариты энергоблока, м Больше: 18.3х5.0х5.9 при единичной мощности агрегата 16МВт без системы охлаждения Меньше: 19.9х5.2х3.8 при единичной мощности агрегата 25МВт
Удельный расход масла, г/кВт*ч 0.3 - 0.4 0.05
Количество пусков Не ограничено и не влияет на сокращение моторесурса Не ограничено, но влияет на сокращение моторесурса
Ремонтопригодность Ремонт может производиться на месте и требует меньше времени Ремонт возможен на специальном предприятии
Стоимость капремонта Дешевле Дороже
Экология Удельно - в мг/м3 - больше, но объем вредных выбросов в м3 меньше Удельно - в мг/м3 - меньше, но объем выбросов в м3 больше
Стоимость энергоблока Меньше при единичной мощности двигателя до 3.5МВт Меньше при единичной мощности двигателя более 3.5МВт

На энергетическом рынке представлен очень большой выбор двигателей, имеющих существенные различия в технических характеристиках. Конкуренция между двигателями рассматриваемых типов возможна только в диапазоне единичной электрической мощности до 16 МВт. При более высоких мощностях газотурбинные двигатели вытесняют поршневые практически полностью.

Необходимо учитывать, что каждый двигатель имеет индивидуальные характеристики, и только их следует использовать при выборе типа привода. Это позволяет формировать состав основного оборудования электростанции заданной мощности в нескольких вариантах, варьируя, в первую очередь, электрическую мощность и количество необходимых двигателей. Многовариантность затрудняет выбор предпочтительного типа двигателя.

О КПД поршневых и газотурбинных двигателей

Важнейшей характеристикой любого двигателя в составе электростанций является КПД по выработке электроэнергии (КПДэ), определяющий основной, но не полный объем потребления газа. Обработка статистических данных по значениям КПДэ позволяет наглядно показать области применения, в которых по этому показателю один тип двигателя имеет преимущества перед другим.

Взаимное расположение и конфигурация трех выделенных на рис. 1 зон, в пределах которых находятся точечные изображения значений электрического КПД различных двигателей, позволяет сделать некоторые выводы:

  • даже в пределах одного типа двигателей одинаковой мощности наблюдается значительный разброс значений КПД по выработке электроэнергии;
  • при единичной мощности более 16 МВт газотурбинные двигатели в комбинированном цикле обеспечивают значение КПДэ выше 48% и монопольно владеют рынком;
  • электрический КПД газотурбинных двигателей мощностью до 16 МВт, работающих как в простом, так и в комбинированном цикле, ниже (иногда очень существенно), чем у поршневых двигателей;
  • газотурбинные двигатели единичной мощностью до 1 МВт, появившиеся на рынке в последнее время, по значению КПДэ превосходят двигатели мощностью 2-8 МВт, наиболее часто применяемые сегодня в составе электростанций;
  • характер изменения КПДэ газотурбинных двигателей имеет три зоны: две с относительно постоянным значением - 27 и 36% соответственно и одну с переменным - от 27 до 36%; в пределах двух зон КПДэ слабо зависит от электрической мощности;
  • значение КПД по выработке электроэнергии поршневых двигателей находится в постоянной зависимости от их электрической мощности.

Однако эти факторы не являются основанием для того, чтобы отдать приоритет поршневым двигателям. Даже если электростанция будет вырабатывать только электрическую энергию, при сравнении вариантов состава оборудования с различным типом двигателей потребуется выполнить экономические расчеты. Необходимо доказать, что стоимость сэкономленного газа окупит разницу в стоимости поршневых и газотурбинных двигателей, а также дополнительного оборудования к ним. Количество сэкономленного газа не может быть определено, если неизвестен режим работы станции по отпуску электроэнергии в зимнее и летнее время. Идеально, если известны необходимые электрические нагрузки - максимальные (зимний рабочий день) и минимальные (летний выходной день).

Использование и электрической и тепловой энергии

Если же электростанция должна производить не только электрическую, но и тепловую энергию, то потребуется определить, за счет каких источников можно покрыть тепловое потребление. Таких источников, как правило, два - утилизированная теплота двигателей и/или котельная.

У поршневых двигателей утилизируется теплота охлаждающего масла, сжатого воздуха и выхлопных газов, у газотурбинных - только теплота выхлопных газов. Основное количество теплоты утилизируется из выхлопных газов с помощью утилизационных теплообменников (УТО).

Количество утилизированной теплоты в значительной степени зависит от режима работы двигателя по выработке электроэнергии и от климатических условий. Неверная оценка режимов работы двигателей в зимнее время приведет к ошибкам в определении количества утилизированной теплоты и неправильному выбору установленной мощности котельной.

Графики на рис.2 показывают возможности отпуска утилизированной теплоты от газотурбинных и поршневых двигателей для целей теплоснабжения. Точки на кривых соответствуют данным заводов-изготовителей о возможностях имеющейся техники для утилизации теплоты. На двигателе одной и той же электрической мощности производители устанавливают различные УТО - исходя из конкретных задач.

Преимущества газотурбинных двигателей в части выработки тепла бесспорны. Особенно это касается двигателей электрической мощностью 2-10 МВт, что объясняется относительно низким значением их электрического КПД. По мере роста КПДэ газотурбинных двигателей количество утилизированной теплоты должно неизбежно снижаться.

При выборе поршневого двигателя для электро- и теплоснабжения конкретного объекта необходимость использования котельной в составе электростанции почти не вызывает сомнений. Работа котельной требует увеличения расхода газа сверх необходимого для выработки электроэнергии. Возникает вопрос, как отличаются расходы газа на энергоснабжение объекта, если в одном случае используются только ГТД с утилизацией теплоты выхлопных газов, а в другом - поршневые двигатели с утилизацией теплоты и котельная. Только после досконального изучения особенностей потребления объектом электроэнергии и тепла можно ответить на этот вопрос.

Если принять, что расчетное потребление тепла объектом может быть полностью покрыто утилизированной теплотой ГТД, а недостаток теплоты при использовании поршневого двигателя компенсируется котельной, то можно выявить характер изменения суммарного расхода газа на энергоснабжение объекта.

Используя данные на рис. 1 и 2, можно для характерных точек зон, отмеченных на рис. 1, получить сведения об экономии или перерасходе газа при использовании приводов различного типа. Они представлены в таблице:

Абсолютные значения экономии газа справедливы только для конкретного объекта, характеристики которого были заложены в расчет, но общий характер зависимости отражен правильно, а именно:
при относительно близких значениях электрического КПД (разница до 10%) использование поршневых двигателей и котельной приводит к перерасходу топлива;

  • при относительно близких значениях электрического КПД (разница до 10%) использовние поршневых двигателей и котельной приводит к перерасходу топлива;
  • при разнице значений КПДэ более 10% для работы поршневых двигателей и котельной потребуется меньше газа, чем для ГТД;
  • существует некая точка с максимальной экономией газа при использовании поршневых двигателей и котельной, где разница между значениями КПДэ двигателей равна 13-14%;
  • чем выше значение КПДэ поршневого двигателя и ниже - газотурбинного, тем больше экономия газа.

В качестве дополнения

Как правило, задача не ограничивается выбором типа привода, требуется определить состав основного оборудования электростанции - тип агрегатов, их количество, вспомогательное оборудование.

Выбор двигателей для производства нужного количества электроэнергии определяет возможности выработки утилизированной теплоты. При этом надо учесть все особенности изменения технических характеристик двигателя, связанные с климатическими условиями, с характером электрической нагрузки, и определить влияние этих изменений на отпуск утилизированной теплоты.

Необходимо также помнить, что в состав электростанции входят не только двигатели. На ее площадке обычно располагается свыше десятка вспомогательных сооружений, работа которых также влияет на технические и экономические показатели электростанции.

Как уже указывалось, состав оборудования электростанции с технической точки зрения можно сформировать в нескольких вариантах, поэтому его окончательный выбор может быть обоснован только с экономических позиций.

При этом знание характеристик конкретных двигателей и их влияние на экономические показатели будущей электростанции чрезвычайно важно. При выполнении экономических расчетов неизбежен учет моторесурса, ремонтопригодности, сроков проведения и стоимости капитальных ремонтов. Эти показатели также индивидуальны для каждого конкретного двигателя независимо от его типа.

Нельзя исключать влияние экологических факторов на выбор типа двигателей для электростанции. Состояние атмосферы в районе предполагаемой эксплуатации электростанции может стать основным фактором при определении типа двигателя (несмотря ни на какие экономические соображения).

Как уже отмечалось, данные о стоимости двигателей и электростанций на их базе не публикуются. Изготовители или поставщики оборудования ссылаются на возможную разницу в комплектации, условия доставки и другие причины. Только после заполнения фирменного опросного листа будут представлены цены. Поэтому сведения в первой таблице о том, что стоимость поршневых двигателей мощностью до 3,5 МВт ниже стоимости газотурбинных такой же мощности, могут оказаться неверными.

Заключение

Таким образом, в классе единичной мощности до 16 МВт нельзя отдавать однозначное предпочтение ни газотурбинным, ни поршневым двигателям. Только тщательный анализ ожидаемых режимов работы конкретной электростанции по выработке электроэнергии и теплоты (с учетом особенностей конкретных двигателей и многочисленных экономических факторов) позволит полностью обосновать выбор типа двигателя. Определить состав оборудования на профессиональном уровне может специализированная фирма.

Использованная литература

  1. Габич А. Применение газотурбинных двигателей малой мощности в энергетике // Газотурбинные технологии. 2003, № 6. С. 30-31.
  2. Буров В. Д. Газотурбинные и газопоршневые энергетические установки малой мощности // Горныйжурнал. 2004, специальный выпуск. С. 87-89,133.
  3. Каталог газотурбинного оборудования // Газотурбинные технологии. 2005. С. 208.
  4. Салихов А. А., Фаткулин Р. М., Абрахманов P. P., Щаулов В. Ю. Развитие мини-ТЭЦ с применением газопоршневых двигателей в Республике Башкортостан // Новости теплоснабжения. 2003, № 11. С. 24-30.

Данная статья с незначительными изменениями взята из журнала "Турбины и дизели", №1(2) за 2006г.
Автор - В.П. Вершинский, ООО "Газпромэнергосервис".

Силовыми агрегатами - приводами электрических генераторов для автономных малых тепловых электростанций могут быть дизельные, газопоршневые, микротурбинные и газотурбинные двигатели.

О преимуществах тех или иных генерационных установок и технологий написано большое количество дискуссионных и полемических статей. Как правило, в спорах в загоне, в опале часто остаются либо те либо другие. Попробуем разобраться, почему.

Определяющими критериями выбора силовых агрегатов для строительства автономных электростанций являются вопросы расхода топлива, уровень эксплуатационных затрат, а также срок окупаемости оборудования электростанции.

Важными факторами выбора силовых агрегатов являются простота эксплуатации, уровень технического обслуживания и ремонта, а также место выполнения ремонта силовых агрегатов. Эти вопросы связаны, прежде всего, с расходами и проблемами, которые может иметь впоследствии владелец автономной электростанции.

В данной статье у автора нет корыстной цели расставить приоритеты в пользу поршневой или турбинной технологий. Типы силовых установок электростанций правильнее, оптимальнее всего подбирать непосредственно к проекту, исходя из индивидуальных условий и технического задания заказчика.

При выборе силового оборудования для строительства автономной газовой ТЭЦ желательно консультироваться с независимыми специалистами из инжиниринговых компаний уже осуществляющих строительство электростанций «под ключ». Инжиниринговая компания должна иметь реализованные проекты, на которые можно посмотреть и посетить с экскурсией. Следует учитывать и такой фактор, как слабость и неразвитость рынка генерационного оборудования в России, реальные объемы продаж на котором, в сравнении с развитыми странами, невелики и оставляют желать лучшего – это, прежде всего, отображается на объеме и качестве предложений.

Газопоршневые установки против газотурбинных двигателей - эксплуатационные затраты

Действительно ли, что эксплуатационные затраты на мини–ТЭЦ с поршневыми машинами ниже, чем затраты на эксплуатацию электростанции с газовыми турбинами?

Стоимость капитального ремонта газопоршневого двигателя может составлять 30–350% от первоначальной стоимости самого силового агрегата, а не всей электростанции - при капремонте осуществляется замена поршневой группы. Ремонт газопоршневых установок можно производить на месте без сложного диагностического оборудования один раз в 7-8 лет.

Цена ремонта газотурбинной установки составляет 30–50% от начальных вложений. Как видите, затраты примерно равны. Реальные, честные цены на сами газотурбинные и поршневые агрегаты сопоставимой мощности и качества также схожи.

Капитальный ремонт газотурбинной установки ввиду его сложности на месте не производится. Поставщик должен увезти отработанный блок и привезти сменный газотурбинный блок. Старый блок может быть восстановлен только в заводских условиях.

Всегда следует учитывать соблюдение графика регламентных работ, характер нагрузок и режимы эксплуатации электростанции, вне зависимости от типа установленных силовых агрегатов.

Вопрос, который часто муссируется, о привередливости турбины к условиям эксплуатации, связан с устаревшей информацией сорокалетней давности. Тогда «на земле», в приводе электростанций, использовались авиационные турбины, «снятые с крыла» самолета. Такие турбины с минимальными изменениями приспосабливались к работе в качестве основных силовых агрегатов для электростанций.

Сегодня на современных автономных электростанциях применяются турбины промышленного, индустриального исполнения, рассчитанные на непрерывную работу с различными нагрузками.

Нижний предел минимальной электрической нагрузки, официально заявляемый заводами-производителями для индустриальных турбин, составляет 3–5%, но в таком режиме расход по топливу возрастает на 40%. Максимальная нагрузка газотурбинной установки, в ограниченных временных интервалах может достигать 110-120%.

Современные газопоршневые установки обладают феноменальной экономичностью, базирующейся на высоком уровне электрического КПД. «Проблемы», связанные с работой газопоршневых установок на малых нагрузках, решаются положительно еще на стадии проектирования. Проектирование должно быть качественным.

Cоблюдение рекомендованного заводом-изготовителем режима эксплуатации продлит жизнь деталям двигателя, сэкономив таким образом деньги владельцу автономной электростанции. Иногда, чтобы вывести газопоршневые машины в номинальный режим при частичных нагрузках, в проект тепловой схемы станции включаются один-два электрических котла, которые и позволяют обеспечить желаемые 50% нагрузки.

Для электростанций на базе газопоршневых установок и газовых турбин важным является соблюдение правила N+1 - количество действующих агрегатов плюс еще один - для резерва. “N+1” - это удобное, рациональное для эксплуатирующего персонала количество установок. Это обусловлено тем, что для силовых установок любых типов и видов надо проводить регламентные и ремонтные работы.

Предприятию, подключенному к сети, можно смонтировать только одну установку и пользоваться собственной электроэнергией по себестоимости, а во время техобслуживания питаться от общей электросети, платя по счетчику. Это дешевле, чем «+1», но, к сожалению, не всегда выполнимо. Связано это, как правило, с отсутствием электросети вообще, либо с неимоверной дороговизной технических условий на само подключение.

Недобросовестные дилеры газопоршневых установок и газовых турбин до продажи оборудования покупателю, как правило, предоставляют только проспекты - коммерческую литературу общего плана и крайне редко - точные сведения о полных эксплуатационных расходах и производимых технических регламентах.

На мощных газопоршневых установках масло менять не требуется. При постоянной работе оно просто вырабатывается, не успевая стареть. Масло на таких установках постоянно доливается. Подобные режимы эксплуатации предусмотрены особой конструкцией мощных газопоршневых двигателей и рекомендованы заводом-изготовителем.

Угар моторного масла составляет 0,25–0,45 грамма на один произведенный киловатт в час. Угар всегда выше при снижении нагрузки. Как правило, в комплект газопоршневого двигателя входит специальный резервуар для непрерывного долива масла, и мини-лаборатория для проверки его качества и определения срока замены.

Соответственно, подлежат замене и масляные фильтры или картриджи в них.

Так как моторное масло все же выгорает, поршневые агрегаты имеют чуть более высокий уровень вредных выбросов в атмосферу, нежели газотурбинные установки. Но так как газ сгорает полностью и является одним из самых чистых видов топлива, то говорить о серьезных загрязнениях атмосферы - только «шашки тупить». Пару старых венгерских автобусов «Икарус» наносят экологии куда более серьезный вред. Для соответствия требованиям по экологии, при использовании поршневых машин, надо строить более высокие дымовые трубы, с учетом уже имеющегося уровня ПДК в окружающей среде.

Отработанное масло газопоршневых установок нельзя просто вылить на землю - оно требует утилизации - это «расходы» для владельцев электростанции. Но на этом можно и заработать - отработанное моторное масло покупают специализированные организации.

Многие из нас используют моторное масло в поршневых двигателях автомобилей. Если двигатель исправен, правильно эксплуатируется и заправляется нормальным топливом, то никаких финансовых катаклизмов, связанных с его расходом, не происходит.

То же самое и на поршневых электростанциях: - расхода моторного масла бояться не нужно, оно вас не разорит, при нормальной эксплуатации современных качественных газопоршневых установок затраты по этой статье составляют всего 2-3 (!) копейки на 1 кВт выработанной электроэнергии.

В современных газотурбинных установках масло используется только в редукторе. Его объем можно считать незначительным. Замена редукторного масла в ГТУ производится в среднем 1 раз в 3-5 лет, а его долив не требуется.

Для проведения сервиса в полном объеме в комплект мощной газопоршневой установки должна входить кран–балка. При помощи кран–балки снимают тяжелые детали поршневых двигателей. Использование кран–балки требует высоких потолков помещения для машинных залов поршневой электростанции. Для ремонта газопоршневых установок малой и средней мощности можно обходиться более простыми подъемными механизмами.

Газопоршневые электростанции при поставке могут комплектоваться различными ремонтными инструментами и приспособлениями. Его наличие предполагает, что даже все ответственные операции можно производить силами квалифицированного персонала на месте. Фактически все ремонтные работы с газовыми турбинами можно проводить либо на заводе-изготовителе, либо при непосредственной помощи заводских специалистов.

Один раз в 3–4 месяца требуется замена свечей зажигания. Замена свечей - это всего 1-2 (!) копейки в себестоимости 1 кВт/ч собственной электроэнергии.

Поршневые агрегаты, в отличие от газотурбинных установок, имеют жидкостное охлаждение, соответственно персоналу автономной электростанции необходимо постоянно следить за уровнем охлаждающей жидкости и осуществлять периодическую замену, а если это вода, то требуется обязательно осуществлять её химическую подготовку.

Вышеперечисленные особенности эксплуатации поршневых агрегатов отсутствуют у газотурбинных установок. В газотурбинных установках не используется такие расходные материалы и компоненты, как:

  • моторное масло,
  • свечи зажигания,
  • масляные фильтры,
  • охлаждающая жидкость,
  • наборы высоковольтных проводов.

Но ГТУ на месте не отремонтируешь и гораздо больший расход газа невозможно сопоставлять с затратами на эксплуатацию и расходные материалы для поршневых установок.

Что выбрать? Газопоршневые или газотурбинные установки?

Как соотносятся мощность силовых агрегатов электростанций и температура окружающей среды?

При значительном повышении температуры окружающей среды мощность газотурбинной установки падает. Но при понижении температуры электрическая мощность газотурбинной установки наоборот, растет. Параметры электрической мощности, по существующим стандартам ISO, измеряются при t +15 °C.

Иногда важным моментом является и то, что газотурбинная установка способна отдать в 1,5 раза больше бесплатной тепловой энергии, нежели поршневой агрегат аналогичной мощности. При использовании мощной (от 50 МВт) автономной ТЭЦ в коммунальном хозяйстве, например, это может иметь определяющее значение при выборе типа силовых агрегатов, особенно при большом и равномерном потреблении именно тепловой энергии.

Наоборот, там где тепло не требуется в больших количествах, а нужен акцент именно на производстве электрической энергии, будет экономически целесообразнее использование газопоршневых установок.

Высокая температура на выходе газотурбинных установок позволяет использовать в составе электростанции паровую турбину. Это оборудование бывает востребованным, если потребителю необходимо получить максимальное количество электрической энергии при одном и том же объеме потраченного газового топлива, и таким образом достичь высокого электрического КПД - до 59%. Энергокомплекс такой конфигурации сложнее в эксплуатации и стоит он на 30-40% дороже обычного.

Электростанции, имеющие в своей структуре паровые турбины, как правило, рассчитаны на довольно большую мощность - от 50 МВт и выше.

Поговорим о самом главном: газопоршневые установки против газотурбинных силовых агрегатов - КПД

КПД силовой установки более чем актуален - ведь он влияет на расход топлива. Средний удельный расход газового топлива на 1 выработанный кВт/час значительно меньше у газопоршневой установки, причем при любом режиме нагрузки (хотя длительные нагрузки менее 25% противопоказаны для поршневых двигателей).

Электрический КПД поршневых машин составляет 40–44%, а газовых турбин - 23–33% (в парогазовом цикле турбина способна выдать КПД достигающий 59%).

Парогазовый цикл применяется при высокой мощности электростанций - от 50-70 МВт.

Если Вам надо изготовить локомотив, самолет или морское судно, то можно считать одним из определяющих показателей именно коэффициент полезного действия (КПД) силовой установки. Тепло, которое получается в процессе работы двигателя локомотива, самолета (или судна) не используется и выбрасывается в атмосферу.

Но мы строим не локомотив, а электростанцию и при выборе типа силовых агрегатов для автономной электростанции подход несколько иной - здесь необходимо говорить о полноте использования сгораемого топлива - коэффициенте использования топлива (КИТ).

Сгорая, топливо производит основную работу - вращает генератор электростанции. Вся остальная энергия сгорания топлива - это тепло, которое можно и нужно использовать. В этом случае так называемый, «общий КПД», а вернее коэффициент использования топлива (КИТ) электростанции будет порядка 80-90%.

Если потребитель рассчитывает использовать тепловую энергию автономной электростанции в полном объеме, что обычно маловероятно, то коэффициент полезного действия (КПД) автономной электростанции не имеет практического значения.

При снижении нагрузки до 50% электрический КПД газовой турбины снижается.

Кроме того, турбинам требуется высокое входное давление газа, а для этого обязательно устанавливают компрессоры (поршневые) и они также повышают расход топлива.
Сравнение газотурбинных установок и газопоршневых двигателей в составе мини–ТЭЦ показывает, что установка газовых турбин целесообразна на объектах, которые имеют равномерные электрические и тепловые потребности при мощности свыше 30-40 МВт.

Из вышесказанного следует, что электрический КПД силовых агрегатов разных типов имеет прямую проекцию на расход топлива.

Газопоршневые агрегаты расходуют на четверть, а то и на треть меньше топлива, чем газотурбинные установки – это основная статья расходов!

Соответственно, при схожей или равной стоимости самого оборудования более дешёвая электрическая энергия получается на газопоршневых установках. Газ - это основная расходная статья при эксплуатации автономной электростанции!

Газопоршневые установки против газотурбинных двигателей - входное давление газа

Всегда ли необходимо наличие газопровода высокого давления, в случае применения газовых турбин?

Для всех типов современных силовых агрегатов электростанций давление подводимого газа не имеет практического значения, так как в комплекте газотурбинной установки всегда имеется газовый компрессор, входящий в стоимость энергокомплекса.

Компрессор обеспечивает требуемые рабочие характеристики газового топлива по давлению. Современные компрессоры являются чрезвычайно надежными и малообслуживаемыми агрегатами. В мире современных технологий, как для газопоршневых двигателей, так и для газовых турбин важно лишь наличие должного объема газового топлива для обеспечения нормальной работы автономной электростанции.

Однако не следует забывать, что дожимной компрессор также требует немалой энергии, расходных материалов и обслуживания . Парадоксально, но для мощных турбин часто используются именно поршневые компрессоры.

Газопоршневые двигатели против газотурбинных агрегатов - двухтопливные установки

Часто пишут и говорят, что двухтопливные установки могут быть только поршневыми. Правда ли это?

Это не соответствует действительности. Все известные фирмы-производители газовых турбин имеют в своей гамме двухтопливные агрегаты. Основной особенностью работы двухтопливной установки является ее возможность работы, как на природном газе, так и на дизельном топливе. Благодаря применению в двухтопливной установке двух видов топлива, можно отметить ряд ее преимуществ по сравнению с монотопливными установками:

  • при отсутствии природного газа установка автоматически переходит на работу на дизельном топливе;
  • во время переходных процессов установка автоматически переходит на работу на дизельном топливе.

При выходе на рабочий режим осуществляется обратный процесс перехода на работу на природном газе и дизельном топливе;
Не стоит забывать и о том факте, что первые турбины изначально проектировались для работы именно на жидком топливе - керосине.

Двухтопливные установки имеют все же ограниченное применение и не нужны для большинства автономных ТЭЦ - для этого есть более простые инженерные решения.

Газопоршневые установки против газотурбинных - количество пусков

Каким может быть количество пусков газопоршневых агрегатов?

Количество пусков: газопоршневой двигатель может запускаться и останавливаться неограниченное число раз, и это не отражается на его моторесурсе. Но частые пуски– остановки газопоршневых агрегатов, с потерей питания собственных нужд, могут повлечь за собой износ наиболее нагруженных узлов (подшипников турбонагнетателей, клапанов и т.д.).

Газотурбинную установку из-за резких изменений термических напряжений, возникающих в наиболее ответственных узлах и деталях горячего тракта ГТУ при быстрых пусках агрегата из холодного состояния, предпочтительнее использовать для постоянной, непрерывной работы.

Газопоршневые двигатели электростанций против газотурбинных установок - ресурс до капитального ремонта

Каким может быть ресурс установки до капитального ремонта?

Ресурс до капитального ремонта составляет у газовой турбины 40000–60000 рабочих часов. При правильной эксплуатации и своевременном проведении регламентных работ у газопоршневого двигателя этот показатель также равен 40000–60000 рабочих часов. Однако бывают иные ситуации, когда капремонт наступает гораздо раньше.

Газопоршневые установки против газотурбинных двигателей - капитальные вложения и цены

Какие потребуются капитальные вложения (инвестиции) в строительство электростанции? Какова стоимость строительства автономного энергокомплекса под ключ?

Как показывают расчёты, капиталовложения (доллар/кВт) в строительство тепловой электростанции с газопоршневыми двигателями приблизительно равны с газотурбинными установками. Финская тепловая электростанция WARTSILA мощностью 9 МВт обойдется заказчику ориентировочно в 14 миллионов евро. Аналогичная газотурбинная тепловая электростанция на базе первоклассных агрегатов полностью «под ключ» будет стоить 15,3 миллионов долларов.

Газопоршневые моторы против газотурбинных установок - экология

Каким образом выполняются требования по экологии?

Надо отметить, что газопоршневые установки уступают газотурбинным агрегатам по уровню выбросов NO x . Так как моторное масло выгорает, поршневые агрегаты имеют уровень вредных выбросов в атмосферу чуть больший, чем у газотурбинных агрегатов.

Но это не критично: в СЭС запрашивается уровень фона по ПДК в месте расположения мини-ТЭЦ, После этого делается расчёт рассеивания с тем, чтобы «добавка» вредных веществ от мини-ТЭЦ добавленная к фону не привела к превышению ПДК. Путём нескольких итераций подбирается минимальная высота дымовой трубы, при которой соблюдаются требования СанПиН. Добавка от станции 16 МВт по выбросам NO x не столь значительна: при высоте дымовой трубы 30 м - 0.2 ПДК, при 50 м - 0.1 ПДК.

Уровень вредных выбросов от большинства современных газотурбинных установок не превышает значение 20-30 ppm и в каких-то проектах это может иметь определенное значение.

Поршневые установки при работе имеют вибрации и низкочастотный шум. Доведение шума до стандартных значений возможно, просто необходимы соответствующие инженерные решения. Помимо расчёта рассеивания при разработке раздела проектной документации «Охрана окружающей среды» делается акустический расчёт и проверяется: удовлетворяют ли выбранные проектные решения и применяемые материалы требованиям СанПиН с точки зрения шума.

Любое оборудование излучает шум в определенном спектре частот. Газотурбинные установки сия чаша не миновала.

Газопоршневые установки против газотурбинных двигателей - выводы

При линейных нагрузках и соблюдении правила N+1 применение газопоршневых двигателей в качестве основного источника энергоснабжения возможно. В составе такой электростанции необходимы резервные агрегаты и емкости для хранения второго вида топлива - дизельного.

В диапазоне мощности до 40-50 МВт использование поршневых моторов на мини–ТЭЦ считается абсолютно оправданным.

В случае использования газопоршневых агрегатов потребителю можно полностью уйти от внешнего электроснабжения, но только при обдуманном и взвешенном подходе.

Поршневые установки так же можно применять и в качестве резервных или аварийных источников электроэнергии.

Некая альтернатива поршневым установкам – газовые микротурбины. Правда цены на микротурбины сильно «кусаются» и составляют ~ $2500–4000 за 1 кВт установленной мощности!

Сравнение газотурбинных установок и газопоршневых двигателей в составе мини–ТЭЦ показывает, что установка газовых турбин возможна на любых объектах, которые имеют электрические нагрузки более 14-15 МВт, но из-за высокого расхода газа турбины рекомендуются для электростанций гораздо большей мощности – 50-70 МВт.

Для многих современных генерационных установок 200.000 моточасов эксплуатации не является критической величиной и при соблюдении графика планового технического обслуживания и поэтапной замены частей турбины, подверженных износу: подшипники, инжекторы, различное вспомогательное оборудование (насосы, вентиляторы) дальнейшая эксплуатация газотурбинной установки остается экономически целесообразной. Качественные газопоршневые установки сегодня так же успешно преодолевают 200.000 моточасов эксплуатации.

Это подтверждается современной практикой эксплуатации газотурбинных/газопоршневых установок во всем мире.

При выборе силовых агрегатов автономной электростанции необходимы консультации специалистов!

Советы специалистов, надзор необходимы и при строительстве автономных электростанций. Для решения задачи нужна инжиниринговая компания с опытом работы и реализованными проектами.

Инжиниринг позволяет компетентно, не предвзято и объективно определиться с выбором основного и вспомогательного оборудования для подбора оптимальной конфигурации - комплектации вашей будущей электростанции.

Квалифицированный инжиниринг позволяет сберечь значительные денежные средства заказчика, а это 10–40% от общей суммы затрат. Инжиниринг от профессионалов в сфере электроэнергетики, позволяет избежать дорогостоящих ошибок в проектировании и в выборе поставщиков оборудования.

«Турбонаддув», «турбореактивные», «турбовинтовые», - эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки? Попытка как можно полнее ответить на эти вопросы предпринята в этой статье.

Российский машиностроительный лидер ОДК

России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК - Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков - "Росатом", "Газпром" и другие «киты» химической промышленности и энергетики.

Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае.

А начиналось все так просто…

Поиски и пар

Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар - это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями.

Рождение газовых турбин

Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.

Газовая турбина Николы Тесла

Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, - в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.

Принципиальная схема

Теперь о принципиальном устройстве машины. Она представляет собой совокупность вращающейся системы, насаженной на ось (ротора) и неподвижной части (статора). На валу размещен диск с рабочими лопатками, образующими концентрическую решетку, на них воздействует газ, подаваемый под давлением через специальные сопла. Затем расширившийся газ поступает на крыльчатку, также оборудованную лопатками, называемыми рабочими. Для впуска воздушно-топливной смеси и выпуска (выхлопа) служат особые патрубки. Также в общей схеме участвует компрессор. Он может быть выполнен по различному принципу, в зависимости от требуемого рабочего давления. Для его работы от оси отбирается часть энергии, идущая на сжатие воздуха. Газовая турбина работает за счет процесса сгорания воздушно-топливной смеси, сопровождающегося значительным увеличением объема. Вал вращается, его энергию можно использовать полезно. Такая схема называется одноконтурной, если же она повторяется, то ее считают многоступенчатой.

Достоинства авиационных турбин

Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.

Есть у газотурбинных двигателей и недостатки

Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры.

Охлаждение газовых турбин - сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.

Правильное применение

Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого - газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие…

Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись.

Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.

Тригенераторные электростанции

Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, - от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.

Ядерные энергоустановки

Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.

Широкое применение

Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.

Тепловая турбина постоянного действия, в которой тепловая энергия сжатого и нагретого газа (обычно продуктов сгорания топлива) преобразуется в механическую вращательную работу на валу ; является конструктивным элементом газотурбинного двигателя.

Нагревание сжатого газа, как правило, происходит в камере сгорания. Также можно осуществлять нагрев в ядер-ном реакторе и др. Впервые газовые турбины появились в конце XIX в. в качестве газотурбинного двигателя и по конструктивному выполнению приближались к паровой турбине. Газовая турбина конструктивно представляет собой целый ряд упорядоченно расположенных неподвижных лопаточных венцов аппарата сопла и вращающихся венцов рабочего колеса, которые в результате образуют проточную часть. Ступень турбины представляет собой сопловой аппарат, совмещенный с рабочим колесом . Ступень состоит из статора, в который входят стационарные детали (корпус, сопловые лопатки, бандажные кольца), и ротора , представляющего собой совокупность вращающихся частей (таких, как рабочие лопатки, диски, вал).

Классификация газовой турбины осуществляется по многим конструктивным особенностям: по направлению газового потока, количеству ступеней, способу использования перепада тепла и способу подвода газа к рабочему колесу. По направлению газового потока можно различить газовые турбины осевые (самые распространенные) и радиальные, а также диагональные и тангенциальные. В осевых газовых турбинах поток в меридиональном сечении транспортируется в основном вдоль всей оси турбины; в радиальных турбинах, наоборот, перпендикулярно оси. Радиальные турбины подразделяются на центростремительные и центробежные. В диагональной турбине газ течет под некоторым углом к оси вращения турбины. У рабочего колеса тангенциальной турбины отсутствуют лопатки, такие турбины применяются при очень малом расходе газа, обычно в измерительных приборах. Газовые турбины бывают одно-, двух- и многоступенчатые.

Количество ступеней определяется многими факторами: назначением турбины, ее конструктивной схемой, общей мощностью и развиваемой одной ступенью, а также срабатываемым перепадом давления. По способу использования располагаемого перепада тепла различают турбины со ступенями скорости, у которых в рабочем колесе происходит только поворот потока, без изменения давления (активные турбины), и турбины со ступенями давления, в них давление уменьшается как в сопловых аппаратах, так и на рабочих лопатках (реактивные турбины). В парциальных газовых турбинах подвод газа к рабочему колесу происходит по части окружности соплового аппарата или по его полной окружности.

В многоступенчатой турбине процесс преобразования энергии состоит из целого ряда последовательных процессов в отдельных ступенях. В межлопаточные каналы соплового аппарата подается сжатый и подогретый газ с начальной скоростью, где в процессе расширения происходит преобразование части располагаемого теплоперепада в кинетическую энергию струи вытекания. Дальнейшее расширение газа и преобразование теплоперепада в полезную работу происходят в межлопаточных каналах рабочего колеса. Газовый поток, воздействуя на рабочие лопатки, создает крутящий момент на главном валу турбины. При этом происходит уменьшение абсолютной скорости газа. Чем ниже эта скорость, тем большая часть энергии газа преобразовалась в механическую работу на валу турбины.

КПД характеризует эффективность газовых турбин, представляющую собой отношение работы, снимаемой с вала, к располагаемой энергии газа перед турбиной. Эффективный КПД современных многоступенчатых турбин довольно высок и достигает 92-94%.

Принцип работы газовой турбины состоит в следующем: газ нагнетается в камеру сгорания компрессором , перемешивается с воздухом, формирует топливную смесь и поджигается. Образовавшиеся продукты горения с высокой температурой (900-1200 °С) проходят через несколько рядов лопаток, установленных на валу турбины, и приводят к вращению турбины. Полученная механическая энергия вала передается через редуктор генератору , вырабатывающему электричество.

Тепловая энергия выходящих из турбины газов попадает в теплоутилизатор. Также вместо производства электричества механическая энергия турбины может быть использована для работы различных насосов , компрессоров и т. п. Наиболее часто используемым видом топлива для газовых турбин является природный газ, хотя это не может исключить возможности использования других видов газообразного топлива. Но при этом газовые турбины очень капризны и предъявляют повышенные требования к качеству его подготовки (необходимы определенные механические включения, влажность).

Температура исходящих из турбины газов составляет 450-550 °С. Количественное соотношение тепловой энергии к электрической у газовых турбин составляет от 1,5: 1 до 2,5: 1, что позволяет строить когенерационные системы, различающиеся по типу теплоносителя:

1) непосредственное (прямое) использование отходящих горячих газов;
2) производство пара низкого или среднего давления (8-18 кг/см2) во внешнем котле;
3) производство горячей воды (лучше, когда требуемая температура превышает 140 °С);
4) производство пара высокого давления.

Большой вклад в развитие газовых турбин внесли советские ученые Б. С. Стечкин, Г. С. Жирицкий, Н. Р. Брилинг, В. В. Уваров, К. В. Холщевиков, И. И. Кириллов и др. Значительных успехов в создании газовых турбин для стационарных и передвижных газотурбинных установок достигли зарубежные фирмы (швейцарские «Броун-Бовери», в которой работал известный словацкий ученый А. Стодола, и «Зульцер», американская «Дженерал электрик» и др.).

В дальнейшем развитие газовых турбин зависит от возможности повышения температуры газа перед турбиной. Это связано с созданием новых жаропрочных материалов и надежных систем охлаждения рабочих лопаток при значительном усовершенствовании проточной части и др.

Благодаря повсеместному переходу в 1990-е гг. на использование природного газа в качестве основного топлива для электроэнергетики газовые турбины заняли существенный сегмент рынка. Несмотря на то что максимальная эффективность оборудования достигается на мощностях от 5 МВт и выше (до 300 МВт), некоторые производители выпускают модели в диапазоне 1-5 МВт.

Применяются газовые турбины в авиации и на электростанциях.

  • Предыдущее: ГАЗОАНАЛИЗАТОР
  • Следующее: ГАЗОВЫЙ ДВИГАТЕЛЬ
Категория: Промышленность на Г